Thermal states minimize the output entropy of single-mode phase-insensitive Gaussian channels with an input entropy constraint

نویسندگان

  • Haoyu Qi
  • Mark M. Wilde
  • Saikat Guha
چکیده

Shannon’s entropy power inequality (EPI), e ) ≥ e + e ) for independent continuous random variables X and Y , with h(X) the differential entropy of X , has found many applications in Gaussian channel coding theorems. Equality holds iff both X and Y are Gaussian. For all the major applications of the EPI, it suffices to restrict Y to be Gaussian. The statement of this restricted EPI is that given a lower bound on h(X), where X is input to the Gaussian noise channel Z = X + Y , a Gaussian input X minimizes h(Z), the output entropy. The conjectured Entropy Photon-number Inequality (EPnI) takes on a role analogous to Shannon’s EPI in proving coding theorem converses involving quantum limits of classical communications over bosonic channels. Similar to the classical case, a restricted version of the EPnI suffices for all its applications, where one of the two states is restricted to be a thermal state—a state that has a zero-mean, circularlysymmetric, complex Gaussian distribution in phase space. The statement of this restricted EPnI is that, given a lower bound on the von Neumann entropy of the input to an n-mode lossy thermal-noise bosonic channel, an n-mode product thermal state input minimizes the output entropy. In this paper, we provide a proof that the thermal state input minimizes the output entropy of an arbitrary single-mode phase-insensitive bosonic Gaussian channel subject to an input entropy constraint. This subsumes the n = 1 case of the aforesaid restricted version of the EPnI. Our results imply that triple trade-off and broadcast capacities of quantum-limited amplifier channels are now solved. However, due to an additivity issue, several bosonic-channel coding-theorem proofs require a stronger multi-channel-use (n > 1) version of the restricted version of the EPnI we prove in this paper, a proof of which remains open.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian states minimize the output entropy of one-mode quantum Gaussian channels

We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove th...

متن کامل

Channels.

We show that the minimum output entropy for all single-mode Gaussian channels is additive and is attained for Gaussian inputs. This allows the derivation of the channel capacity for a number of Gaussian channels, including that of the channel with linear loss, thermal noise, and linear amplification.

متن کامل

Strong converse for the classical capacity of all phase-insensitive bosonic Gaussian channels

Submitted for the DAMOP14 Meeting of The American Physical Society Strong converse for the classical capacity of all phase-insensitive bosonic Gaussian channels BHASKAR ROY BARDHAN, Department of Physics and Astronmoy, Louisiana State University, USA, RAUL GARCIAPATRON, Ecole Polytechnique de Bruxelles, Universite Libre de Bruxelles, Belgium and Max-Planck Institut fuer Quantenoptik, Germany, M...

متن کامل

Energy-constrained private and quantum capacities of quantum channels

This paper establishes a general theory of energy-constrained quantum and private capacities of quantum channels. We begin by defining various energy-constrained communication tasks, including quantum communication with a uniform energy constraint, entanglement transmission with an average energy constraint, private communication with a uniform energy constraint, and secret key transmission wit...

متن کامل

6 Transition behavior in the capacity of correlated - noisy channels in arbitrary dimensions

We construct a class of quantum channels in arbitrary dimensions for which entanglement improves the performance of the channel. The channels have correlated noise and when the level of correlation passes a critical value we see a sharp transition in the optimal input states (states which minimize the output entropy) from separable to maximally entangled states. We show that for a subclass of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1607.05262  شماره 

صفحات  -

تاریخ انتشار 2016